

Position on Planned Burns

A fire ecology strategy needs to be developed and implemented that protects and enhances our biodiversity and is based on the best-available scientific evidence*

The government needs to be open and honest with the public and communicate in ways that will replace ignorance and fear with understanding ^(15,23,25).

Specifically, there is a need to publicly:

- Address the misconception that fuel-reduction burns protect built assets, as overwhelmingly, the scientific evidence does not support this. Overwhelming evidence exists that burning bushland any distance from built assets will *not* protect these assets in a wildfire (4.10.21.22.23.24.25.26.27).
- Acknowledge current burning regimes are seriously damaging our environment and threatening our biodiversity ^(5,6,7,8,9,10,11,12,13,14,15,16) and in many case cause devastation to plant and animal communities that will take decades to recover ^(17,18).
- Acknowledge that prescribed fire can select for fire-prone flora species, making some types of vegetation more flammable than they otherwise might have been ^(1, p289). While decomposition of the litter layer may make fuel reduction burning unnecessary ⁽²⁰⁾ frequent burning can destroy the organisms that decompose that litter, resulting in rapid accumulation of new growth and litter requiring further burning, thus perpetuating a dangerous cycle⁽¹⁾.

There is a need to monitor burn sites for their impact on wildlife and biodiversity. Along with other organizations and scientists ^(16,28,29). FoGL highlights the importance of short- and long-term monitoring in evaluating the impact of prescribed burns on our wildlife and biodiversity. There is evidence that many animals that initially survive a fire subsequently die because of limited food and shelter or by increased predation due to lack of vegetation ^(6,16,30,31,32,33).

Establish state-wide and national databases where data from short- and longer-term monitoring of fire regimes and their effects can be stored and accessed by researchers and the community. Protocols for the long-term monitoring of fire regimes need to be developed and implemented ^(16,28,29).

The community has a right to know what is presumably being gained and what is being lost in every prescribed burn. A prescribed burn might be hugely beneficial for one species but put another at risk. The community has a right to know how these competing values are prioritized ^(6,7) and we must be willing to acknowledge the trade-offs ⁽³⁴⁾

The scientific evidence that a particular ecological burn is necessary, or recommended, for a particular species should be made public, including

- The parameters of the particular burn
- Scientific evidence that this particular burn is expected to improve biodiversity while doing no harm to wildlife.
- Indicator species, focal species, thresholds in levels of native vegetation and how they were measured.

A comprehensive understanding of fauna responses to fire regimes needs to be established. Often plants are used as surrogates in planning fires ⁽¹⁴⁾. This is acknowledged by the scientific community as having unknown ^(6,33,35) and sometimes devastating consequences ^(14,32,36). FoGL calls for more research on fauna responses to fire.

Regarding 'fuel-reduction' burns, plant species targeted as needing to be reduced should be made public.

- There is evidence that not all plants act as significant fire fuel. Dr Malcolm Gill, an eminent scientist from the Australian National Herbarium, states: "While all plants may be said to produce fuel, only a small proportion contribute significantly to the fuel which carries the fires. Removal of the fuel contribution of most species will make no difference to fire spread" ^(3,p1).
- So-called "fuel" is also habitat which should not be burned unnecessarily (11,12,13) Habitat should not be burned simply because some residents mistakenly believe that burning it will protect their homes.

Selection of burn sites should be made on the basis of on-site analysis of environmental factors. Many burn sites are not individually surveyed prior to selection for burning; instead are selected on the basis of a desktop analysis of an 'indicator' plot of the same EVC elsewhere, but there is evidence that these management 'shortcuts' are deeply flawed and of limited generic value ⁽³⁷⁾ and may, therefore, violate accepted scientific principles for managing biodiversity, which include maintenance of structural complexity and maintenance of landscape heterogeneity ⁽³⁷⁾. In addition, it is recognized by experts that all fires require an awareness of local conditions ^{(10).}

References

1 Lindenmayer, D & Bergen, M (2005). *Fire and Biodiversity* <u>Practical Conservation Biology</u>, CSIRO: Melbourne. <u>www.publish.csiro.au/onborrowedtime</u>

2 Vernes, K (2000). Immediate effects of fire on survivorship of the northern bettong (Bettongia troika): an endangered Australian marsupial. Biological conservation, 96, 305-309.

3 Gill, AM, (1996) How Fires Affect Biodiversity. Australian National Herbarium. Canberra

4 Enright, N, & Fontaine, J, (2014). *Climate change and management of fire-prone vegetation in Southwest and Southeast Australia.* <u>Geographical Research</u>, <u>52</u>,(1), 34-44.

5 Australian Government State of the Environment 2001. CSIRO Publ: Melbourne.

6 Gill, AM, McKenna, DJ & Wouters, MA (2014) Landscape Fire, Biodiversity Decline and a Rapidly Changing Milieu: A Microcosm of Global Issues in an Australian Biodiversity Hotspot. Land, 3, 1091-1136; doi:10.3390/land3031091
 7 Keith, DA, McCaw, L & Whelan, RJ (2002). Fire regimes in Australian heathlands and their effects on plants and animals. In

Flammable Australia: The Fire Regimes and Biodiversity of a Continent, RA Bradstock, J Williams & AM Gill (Eds). Pp 199-237. Cambridge University Press: Cambridge

8 Calver, MC & Dell, J (1998). Conservation status of mammals and birds in southwestern Australian forests. I: Is there evidence of direct links between forestry practices and species decline and extinction? Pacific Conservation Biology, <u>4</u>, (4) 295-314.

9 VNPA Issue Paper: Fuel Reduction Burning: Response to the Final Report of the 2009 Victorian Bushfire Royal Commission.
10 Comrie, N (2014). Bushfire Royal Commission Implementation Monitor Annual Report. Victorian Bushfire Commission
11 McKenny, HJA & Kirkpatrick, JB (1999). The role of fallen logs in the regeneration of tree species in Tasmanian mixed forest. Australian Journal of Botany, 47, 745-753.

12 Lindenmayer, DB & Possingham, H (2013) No excuse for habitat destruction Science 680, 340.

13 York, A (1999). Long term effects of repeated prescribed burning on forest invertebrates: Management implications for the conservation of biodiversity. In AM Gill, Woinarski, JCZ & A York (Eds). <u>Australian Biodiversity: Responses to Fire</u>, pp 181-266. Department of the Environment and Heritage, Canberra. Available at

www.deh.gov.au/biodiversity/publications/technical/fire/index.html

14 MacHunter, J, Menkhorst, P, & Loyn, R (2009). *Towards a process for integrating vertebrate fauna into fire management planning.* ARI Environmental Research Technical Report 192. DEPI: Heidelberg.

15 Penman, TD, Christie, FJ, Anderson, AN, Bradstock, RA, Cary, GJ, Henderson, MK, Price, O, Tran, C, Wardle, GM, Williams, RJ & York, A, (2011) *Prescribed burning: How can it work to conserve the things we value?* <u>International journal of Wildland Fire,</u> <u>20</u> (6), 721-733. CSIRO Publ: Melbourne

16 Birds Australia (now Birdlife Australia).Nomination: *Fire regimes that cause biodiversity decline* as Key Threatening Process. November 2010.

17 Penman, TD, Binns, DL & Kavanagh, RP (2007). Burning for Biodiversity or Burning the Biodiversity? Proceedings of the Australasian Fire Association council conference. Hobart. http://proceedings.com.au/tassiefire/papers.pdf/fri penman.pdf
 18 Nimmo, D, Bennett, A, & Clarke, M (2014). Burnoff policies could be damaging habitats for 100 years http://proceedings.com.au/tassiefire/papers.pdf/fri penman.pdf
 18 Nimmo, D, Bennett, A, & Clarke, M (2014). Burnoff policies could be damaging habitats for 100 years http://proceedings.com.au/tassiefire/papers.pdf/ for 100 years http://proceedings.com.

19 Australian Wildlife Protection Council. *Pause and Review all Prescribed Burning* <u>AWPC Conference</u>, Nov 9, 2014. awpc.org.au retrieved online 25/02/15

20 Crockford, RH & Richardson, DP. *Litterfall, litter and associated chemistry in a dry sclerophyll eucalypt forest and a pine plantation in south-eastern Australia: 1. Litterfall and litter.* <u>Hydrological Processes, 12</u> (3), 365-384. DOI.10.1002/(SICI)1099-1085(19980315)12:3<365:AID-HYP588>3.0CO;2-0.

21 Comrie, N (2012). Bushfire Royal Commission Implementation Monitor Annual Report. Victorian Bushfire Commission.
22 Comrie, N (2013). Bushfire Royal Commission Implementation Monitor Annual Report. Victorian Bushfire Commission.
23 Penman, TD, Collins, L, Syphard, AD, Keeley, JE & Bradstock, RA (2014). Influence of Fuels, weather and the built environment on the exposure of property to wildfire. PLOS/ONE. Oct 31.

9(10):e111414.doi:10.1371/journal.pone.0111414

24 Gill, AM & Bradstock, RÁ (2003). Fire regimes and biodiversity: A set of postulates. In <u>Australia Burning: Fire Ecology, Policy and Management Issues.</u> GJ Cary, DB Lindenmayer, & S Dowers (Eds). pp 15-25. CSIRO Publishing: Melbourne.
 25 Gibbons, P, van Bommel, L, Gill, AM, Cary, GJ, Driscoll, DA, Bradstock, RA, Knight, E, Moritz, MA, Stephens, SL & Lindenmayer, DB Land Management practices associated with house loss in wildfires. <u>PLOS/ONE</u> January 18, 2012. Doi:10.137/journal.pone.0029212

26 Gill, AM & Stephens, SI (2009). Scientific and social challenges for the management of fire-prone wildland-urban interfaces. *Environment Research Letters*, <u>4</u>, 1-10.

27 Driscoll, DA, Lindenmayer, DB, Bennett, AF, Bode, M., Bradstock, RA, Cary, GJ, Clarke, MF, Dexter, N, Fensham, R, Friend, G, Gill,M, et.al. (2010) Resolving conflicts in fire management using decision theory: asset protection versus biodiversity conservation. *Conservation Letters*, *1-9*

28 SEQ Fire & Biodiversity Consortium. (undated). Nomination to List: '*Fire regimes that cause biodiversity decline*' as a Key Threatening Process under the *Environmental Protection and Biodiversity Conservation Act 1999.*

29 Bilney, RJ (2014) Austral Ecology, 39 (8), 875-886. DOI:10.111/aec.12145.

30 Christensen, PES. (1980). The biology of 'Bettongia pencillata' (Gray, 1837) and 'Macropus eugenii' (Desmarest, 1837) in relation to fire. Bulletin, No 91, Forests Department of Western Australia.

31 Russell-Smith, J, Yates, CP, Whitehead, PJ, Smith, R, Craig, R, Allan, GE, Thackway, R, Frakes, I, Cridland. S, Meyer, CP, Gill, AM (2007). *Bushfires 'down under': Patterns and implications of contemporary Australian landscape burning.* <u>International Journal of Wildland Fire, 16</u> (4) 261

32 Sutherland, EF & Dickman, CR (1999). *Mechanisms of recovery after fire by rodents in the Australian environment: A review.* Wildlife Research, 26, 405-419.

33 Atkin, PF (1983). Mammals. In <u>Natural history of the Southeast</u>, MJ Tyler, CR Twidale, JK Ling, JW Holmes (Eds). Royal Society of South Australia: Adelaide.pp.127-133.

34 Baker, J, Whelan, RJ, Evans, L, Moore, S, & Norton, M (2010). *Managing the Ground Parrot in its fiery habitat in south-eastern Australia*. <u>Emu: Austral Ornithology</u>, <u>110</u> (4) 279-284.

35 Clarke, MF (2008). Catering for the needs of fauna in fire management: Science or just wishful thinking? *Wildlife Research*, <u>35</u>, 385-394.

36 Christensen, P (1998) The precautionary principle and grazing, burning and medium-sized animals in northern New South Wales. <u>Australian Forestry, 61</u>, 195-203.

37 Lindenmayer, DB, Franklin, JF & Fischer, F (2006) General management principles and a checklist of strategies to guide forest biodiversity. <u>Biological Conservation</u>, <u>131</u> (3) 433-445. doi:10.1016/j.biocon.2006.02.019